Toll pathway modulates TNF-induced JNK-dependent cell death in Drosophila

نویسندگان

  • Chenxi Wu
  • Changyan Chen
  • Jianli Dai
  • Fan Zhang
  • Yujun Chen
  • Wenzhe Li
  • José Carlos Pastor-Pareja
  • Lei Xue
چکیده

Signalling networks that control the life or death of a cell are of central interest in modern biology. While the defined roles of the c-Jun N-terminal kinase (JNK) pathway in regulating cell death have been well-established, additional factors that modulate JNK-mediated cell death have yet to be fully elucidated. To identify novel regulators of JNK-dependent cell death, we performed a dominant-modifier screen in Drosophila and found that the Toll pathway participates in JNK-mediated cell death. Loss of Toll signalling suppresses ectopically and physiologically activated JNK signalling-induced cell death. Our epistasis analysis suggests that the Toll pathway acts as a downstream modulator for JNK-dependent cell death. In addition, gain of JNK signalling results in Toll pathway activation, revealed by stimulated transcription of Drosomycin (Drs) and increased cytoplasm-to-nucleus translocation of Dorsal. Furthermore, the Spätzle (Spz) family ligands for the Toll receptor are transcriptionally upregulated by activated JNK signalling in a non-cell-autonomous manner, providing a molecular mechanism for JNK-induced Toll pathway activation. Finally, gain of Toll signalling exacerbates JNK-mediated cell death and promotes cell death independent of caspases. Thus, we have identified another important function for the evolutionarily conserved Toll pathway, in addition to its well-studied roles in embryonic dorso-ventral patterning and innate immunity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Loss of flfl Triggers JNK-Dependent Cell Death in Drosophila

falafel (flfl) encodes a Drosophila homolog of human SMEK whose in vivo functions remain elusive. In this study, we performed gain-of-function and loss-of-function analysis in Drosophila and identified flfl as a negative regulator of JNK pathway-mediated cell death. While ectopic expression of flfl suppresses TNF-triggered JNK-dependent cell death, loss of flfl promotes JNK activation and cell ...

متن کامل

Evolution of TNF Signaling Mechanisms JNK-Dependent Apoptosis Triggered by Eiger, the Drosophila Homolog of the TNF Superfamily

Much of what we know about apoptosis in human cells stems from pioneering genetic studies in the nematode C. elegans. However, one important way in which the regulation of mammalian cell death appears to differ from that of its nematode counterpart is in the employment of TNF and TNF receptor superfamilies. No members of these families are present in C. elegans, yet TNF factors play prominent r...

متن کامل

TNF-induced death of adult human oligodendrocytes is mediated by c-jun NH2-terminal kinase-3.

Tumour necrosis factor (TNF) induces death of oligodendrocytes, the putative cell target in multiple sclerosis. We defined that the intracellular transduction pathway involved in TNF-induced death of human adult oligodendrocytes (hOLs) is dependent on c-jun NH(2)-terminal kinase (JNK) activation, but not the other mitogen-activated protein kinase (MAPK), p38. JNK activation, measured by c-jun p...

متن کامل

The effect of down-regulation of CCL5 on lipopolysaccharide-induced WI-38 fibroblast injury: a potential role for infantile pneumonia

Objective(s): Aberrant expression of CCL5 has been found in several kinds of inflammatory diseases, and the roles of CCL5 in these diseases have also been reported. However, the role of CCL5 in infantile pneumonia is still unclear. Thus, the function and acting mechanism of CCL5 in the in vitro model of infantile pneumonia were researched in this study. Materials and Methods: Human fetal lung f...

متن کامل

Inhibition of JNK by cellular stress- and tumor necrosis factor α-induced AKT2 through activation of the NFκB pathway in human epithelial cells.

Previous studies have demonstrated that AKT1 and AKT3 are activated by heat shock and oxidative stress via both phosphatidylinositol 3-kinase-dependent and -independent pathways. However, the activation and role of AKT2 in the stress response have not been fully elucidated. In this study, we show that AKT2 in epithelial cells is activated by UV-C irradiation, heat shock, and hyperosmolarity as ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015